Robert Charles Darwin

Robert Charles Darwin

terça-feira, 6 de março de 2012

Divisão Celular - Meiose (2º ano)


Meiose

Diferentemente da mitose, em que uma célula diplóide, por exemplo, se divide formando duas células também diplóides (divisão equacional), a meiose é um tipo de divisão celular em que uma célula diplóide produz quatro células haplóides, sendo por este motivo uma divisão reducional.
Um fato que reforça o caráter reducional da meiose é que, embora compreenda duas etapas sucessivas de divisão celular, os cromossomos só se duplicam uma vez, durante a interfase – período que antecede tanto a mitose como a meiose. No início da interfase, os filamentos de cromatina não estão duplicados. Posteriormente, ainda nesta fase, ocorre a duplicação, ficando cada cromossomo com duas cromátides.

As várias fases da meiose
A redução do número cromossômico da célula é importante fator para a conservação do lote cromossômico das espécies, pois como a meiose formam-se gametas com a metade do lote cromossômico. Quando da fecundação, ou seja, do encontro de dois gametas, o número de cromossomos da espécie se restabelece.
Podemos estudar a meiose em duas etapas, separadas por um curto intervalo, chamado intercinese. Em cada etapa, encontramos as fases estudadas na mitose, ou seja, prófase, metáfase, anáfase e telófase.
Vamos supor uma célula 2n = 2 e estudar os eventos principais da meiose nessa célula.

Meiose I (Primeira Divisão Meiótica)

Prófase I – É a etapa mais marcante da meiose. Nela ocorre o pareamento dos cromossomos homólogos e pode acontecer um fenômeno conhecido como crossing-over (também chamado de permuta)
Como a prófase I é longa, há uma seqüência de eventos que, para efeito de estudo, pode ser dividida nas seguintes etapas:
  • Inicia-se a espiralação cromossômica. É a fase de leptóteno (leptós = fino), em que os filamentos cromossômicos são finos, pouco visíveis e já constituídos cada um por duas cromátides.
  • Começa a atração e o pareamento dos cromossomos homólogos; é um pareamento ponto por ponto conhecido como sinapse (o prefixo sin provém do grego e significa união). Essa é a fase dezigóteno (zygós = par).
  • A espiralação progrediu: agora, são bem visíveis as duas cromátides de cada homólogo pareado; como existem, então, quatro cromátides, o conjunto forma uma tétrade ou par bivalente. Essa é a fase de paquíteno (pakhús = espesso).
  • Ocorrem quebras casuais nas cromátides e uma troca de pedaços entre as cromátides homólogas, fenômeno conhecido como crossing-over (ou permuta). Em seguida, os homólogos se afastam e evidenciam-se entre eles algumas regiões que estão ainda em contato. Essas regiões são conhecidas como quiasmas (qui corresponde à letra “x” em grego). Os quiasmas representam as regiões em que houve as trocas de pedaços. Essa fase da prófase I é o diplóteno (diplós = duplo).
  • Os pares de cromátides fastam-se um pouco mais e os quiasmas parecem “escorregar” para as extremidades; a espiralação dos cromossomos aumenta. è a última fase da prófase I, conhecida por diacinese (dia = através; kinesis = movimento).
Enquanto acontecem esses eventos, os centríolos, que vieram duplicado da interfase, migram para os pólos opostos e organizam o fuso de divisão; os nucléolos desaparecem; a carioteca se desfaz após o término da prófase I, prenunciando a ocorrência da metáfase I.

Metáfase I – os cromossomos homólogos pareados se dispõem na região mediana da célula; cada cromossomo está preso a fibras de um só pólo.
Anáfase I – o encurtamento das fibras do fuso separa os cromossomos homólogos, que são conduzidos para pólos opostos da célula, não há separação das cromátides-irmãs. Quando os cromossomos atingem os pólos, ocorre sua desespiralação, embora não obrigatória, mesmo porque a segunda etapa da meiose vem a seguir. Às vezes, nem mesmo a carioteca se reconstitui.
Telófase I – no final desta fase, ocorre a citocinese, separando as duas células-filhas haplóides. Segue-se um curto intervalo a intercinese, que procede a prófase II.


Meiose II (segunda divisão meiótica)
Prófase II – cada uma das duas células-filhas tem apenas um lote de cromossomos duplicados. Nesta fase os centríolos duplicam novamente e as células em que houve formação da carioteca, esta começa a se desintegrar.
Metáfase II - como na mitose, os cromossomos prendem-se pelo centrômero às fibras do fuso, que partem de ambos os pólos.
Anáfase II – Ocorre duplicação dos centrômeros, só agora as cromátides-irmãs separam-se (lembrando a mitose).
Telófase II e citocinese – com o término da telófase II reorganizam-se os núcleos. A citocinese separa as quatro células-filhas haplóides, isto é, sem cromossomos homólogos e com a metade do número de cromossomos em relação à célula que iniciou a meiose.



Divisão Celular - Mitose (2º ano)


Divisão celular
Do mesmo modo que uma fábrica pode ser multiplicada pela construção de várias filiais, também as células se dividem e produzem cópias de si mesmas.
Há dois tipos de divisão celular: mitose e meiose.
Na mitosea divisão de uma “célula-mãe” duas “células-filhas” geneticamente idênticas e com o mesmo número cromossômico que existia na célula-mãe. Uma célula n produz duas células n, uma célula 2n produz duas células 2n etc. Trata-se de uma divisão equacional.
Já na meiosea divisão de uma “célula-mãe” 2n gera “células-filhas” ngeneticamente diferentes. Neste caso, como uma célula 2n produz quatro células n, a divisão é chamada reducional.

A interfase – A fase que precede a mitose
É impossível imaginar a multiplicação de uma fabrica, de modo que todas as filiais fossem extremamente semelhantes a matriz, com cópias fieis de todos os componentes, inclusive dos diretores? Essa, porém, no caso da maioria das células, é um acontecimento rotineiro. A mitose corresponde a criação de uma cópia da fabrica e sua meta é a duplicação de todos os componentes.
A principal atividade da célula, antes de se dividir, refere-se a duplicação de seus arquivos de comando, ou seja, à reprodução de uma cópia fiel dos dirigentes que se encontram no núcleo.
A interfase é o período que precede qualquer divisão celular, sendo de intensa atividade metabólica.Nesse período, há a preparação para a divisão celular, que envolve a duplicação da cromatina, material responsável pelo controle da atividade da célula. Todas as informações existentes ao longo da molécula de DNA são passadas para a cópia, como se correspondessem a uma cópia fotográfica da molécula original. Em pouco tempo, cada célula formada da divisão receberá uma cópia exata de cada cromossomo da célula se dividiu.
As duas cópias de cada cromossomo permanecem juntas por certo tempo, unidas pelo centrômero comum, constituindo duas cromátides de um mesmo cromossomo. Na interfase, os centríolos também se duplicam.

A interfase e a Duplicação do DNA
Houve época em que se falava que a interfase era o período de “repouso” da célula. Hoje, sabemos, que na realidade a interfase é um período de intensa atividade metabólica no ciclo celular: é nela que se dá aduplicação do DNA, crescimento e síntese. Costuma-se dividir a interfase em três períodos distintos:G1S e G2.
O intervalo de tempo em que ocorre a duplicação do DNA foi denominado de S (síntese) e o período que antecede é conhecido como G1 (G1 provém do inglês gap, que significa “intervalo”)O período que sucede o S é conhecido como G2.


O ciclo celular todo, incluindo a interfase (G1, S, G2) e a mitose (M) – prófase, metáfase, anáfase e telófase – pode ser representado em um gráfico no qual se coloca a a quantidade da DNA na ordenada (y) e o tempo na abscissa (x). Vamos supor que a célula que vai se dividir tenha, no período G1, uma quantidade 2C de DNA (C é uma unidade arbitrária). O gráfico da variação de DNA, então, seria semelhante ao da figura abaixo.

Nas células, existe uma espécie de “manual de verificação de erros” que é utilizado em algumas etapas do ciclo celular e que é relacionado aos pontos de checagem. Em cada ponto de checagem a célula avalia se é possível avançar ou se é necessário fazer algum ajuste, antes de atingir a fase seguinte. Muitas vezes, a escolha é simplesmente cancelar o processo ou até mesmo conduzir a célula à morte.

As fases da mitose

A mitose é um processo contínuo de divisão celular, mas, por motivos didáticos, para melhor compreendê-la, vamos dividi-la em fases: prófase, metáfase, anáfase e telófase. Alguns autores costumam citar uma quinta fase – a prometáfase – intermediária entre a prófase e a metáfase. O final da mitose, com a separação do citoplasma, é chamado de citocinese.

Prófase – Fase de início (pro = antes)
  • Os cromossomos começam a ficar visíveis devido à espiralação.
  • O nucléolo começa a desaparecer.
  • Organiza-se em torno do núcleo um conjunto de fibras (nada mais são do que microtúbulos) originadas a partir dos centrossomos, constituindo o chamado fuso de divisão (ou fuso mitótico).
Embora os centríolos participem da divisão, não é deles que se originam as fibras do fuso. Na mitose em célula animal, as fibras que se situam ao redor de cada par de centríolos opostas ao fuso constituem o áster (do grego, aster = estrela).
  • O núcleo absorve água, aumenta de volume e a carioteca se desorganiza.
  • No final da prófase, curtas fibras do fuso, provenientes do centrossomos, unem-se aos centrômeros. Cada uma das cromátides-irmãs fica ligada a um dos pólos da célula.
Note que os centrossomos ainda estão alinhados na região equatorial da célula, o que faz alguns autores designarem essa fase de prometáfase.


A formação de um novo par de centríolos é iniciada na fase G1, continua na fase S e na fase G2 a duplicação é completada. No entanto, os dois pares de centríolos permanecem reunidos no mesmo centrossomo. Ao iniciar a prófase, o centrossomo parte-se em dois e cada par de centríolos começa a dirigir-se para pólos opostos da célula que irá entrar em divisão.
 Metáfase – Fase do meio (meta = no meio)
  • Os cromossomos atingem o máximo em espiralação, encurtam e se localizam na região equatorial da célula.
  • No finalzinho da metáfase e início da anáfase ocorre a duplicação dos centrômeros.


Anáfase – Fase do deslocamento (ana indica movimento ao contrário)
  • As fibras do fuso começam a encurtar. Em conseqüência, cada lote de cromossomos-irmãos é puxado para os pólos opostos da célula.
Como cada cromátide passa a ser um novo cromossomo, pode-se considerar que a célula fica temporariamente tetraplóide.


 Telófase – Fase do Fim (telos = fim)
  • Os cromossomos iniciam o processo de desespirilação.
  • Os nucléolos reaparecem nos novos núcleos celulares.
  • A carioteca se reorganiza em cada núcleo-filho.
  • Cada dupla de centríolos já se encontra no local definitivo nas futuras células-filhas.

Citocinese – Separando as células
A partição em duas copias é chamada de citocinese e ocorre, na célula animal, de fora para dentro, isto é, como se a célula fosse estrangulada e partida em duas (citocinese centrípeta). Há uma distribuição de organelas pelas duas células-irmãs. Perceba que a citocinese é, na verdade a divisão do citoplasma. Essa divisão pode ter início já na anáfase, dependendo da célula.


Dinâmica das Populações Biológicas (1º ano)


Dinâmica das populações

As populações possuem diversas características próprias, mensuráveis. Cada membro de uma população pode nascer, crescer e morrer, mas somente uma população como um todo possui taxas de natalidade e de crescimento específicas, além de possuir um padrão de dispersão no tempo e no espaço.

O tamanho de uma população pode ser avaliada pela sua densidade
A densidade populacional pode sofrer alterações. Mantendo-se fixa a área de distribuição, a população pode aumentar devido a nascimentos e imigrações. A diminuição da densidade pode ocorrer como consequência de mortes ou de emigrações.

Curvas de crescimento

curva S é a de crescimento populacional padrão, a esperada para a maioria das populações existentes na natureza. Ela é caracterizada por uma fase inicial de crescimento lento, em que ocorre o ajuste dos organismos ao meio de vida. A seguir, ocorre um rápido crescimento, do tipo exponencial, que culmina com uma fase de estabilização, na qual a população não mais apresenta crescimento. Pequenas oscilações em torno de um valor numérico máximo acontecem, e a população, então permanece em estado de equilíbrio.
Observe o gráfico abaixo para ententer melhor:

Fase A: crescimento lento, fase de adaptação da população ao ambiente, também chamada de fase lag.
Fase B: crescimento acelerado ou exponencial, também chamada de fase log.
Fase C: a população está sujeita aos limites impostos pelo ambiente, a resistência ambiental é maior sobre a população.
Fase D: estabilização do tamanho populacional, onde ocorre oscilações do tamanho populacional em torno de uma média.
Fase E: é a curva teórica de crescimento populacional sem a interferência dos fatores de resistência ambiental.

curva J é típica de populações de algas, por exemplo, na qual há um crescimento explosivo, geométrico, em função do aumento das disponibilidades de nutrientes do meio. Esse crescimento explosivo é seguido de queda brusca do número de indivíduos, pois, em decorrência do esgotamento dos recursos do meio, a taxa de mortalidade é alta, podendo, inclusive, acarretar a extinção da população do local.



Fatores que regulam o crescimento populacional

A fase geométrica do crescimento tende a ser ilimitada em função do potencial biótico da espécie, ou seja, da capacidade que possuem os indivíduos de se reproduzir e gerar descendentes em quantidade ilimitada.
Há porém, barreiras naturais a esse crescimento sem fim. A disponibilidade de espaço e alimentos, o clima e a existência de predatismo e parasitismo e competição são fatores de resistência ambiental (ou, do meio que regulam o crescimento populacional.
O tamanho populacional acaba atingindo um valor numérico máximo permitido pelo ambiente, a chamadacapacidade limite, também denominada capacidade de carga.


curva (a) representa o potencial biótico da espécie; a curva (b) representa o crescimento populacional padrão; (c) é a capacidade limite do meio. A área entre (a) e (b) representa a resistência ambiental.

Fatores dependentes da densidade

Os chamados fatores dependentes da densidade são aqueles que impedem o crescimento populacional excessivo, devido ao grande número de indivíduos existentes em uma dada população: as disputas por espaço, alimento, parceiro sexual, acabam levando à diminuição da taxa reprodutiva e ao aumento da taxa de mortalidade. O predatismo e o parasitismo são dois outros fatores dependentes da densidade, na medida em que os predadores e parasitas encontram mais facilidade de se espalhar entre os indivíduos de uma população numerosa.

A espécie humana e a capacidade limite

O crescimento populacional da espécie humana ocorreu de maneira explosiva nos últimos séculos. Cerca de 500 milhões de pessoas habitavam a Terra em 1650. No intervalo de dois séculos, o número de habitantes chegou a 1 bilhão. Entre 1850 e 1930, já era de 2 bilhões e, em 1975, 4 bilhões de pessoas viviam no nosso planeta. O tempo de duplicação diminuiu e, hoje ultrapassamos 6 bilhões de pessoas. A cada ano, 93 milhões de pessoas são acrescentados. Se as atuais taxas de crescimento persistirem, estima-se que a população humana atingirá o tamanho de 8 bilhões de pessoas em 2017.
Esse incremento do tamanho populacional humano tem muito a ver com a evolução cultural da nossa espécie e com os nossos hábitos de sobrevivência.
O humano deixou de ser caçador-coletor há cerca de 10.000 anos, abandonou o nomadismo e passou a s fixar em locais definidos da Terra, constituindo grupos envolvidos na criação de plantas e animais de interessa alimentar. A taxa de natalidade aumentou e, executando épocas de guerra e pestes , o crescimento populacional humano passou a ser uma realidade.

Pouco a pouco, no entanto, estão sendo avaliados os riscos do crescimento populacional excessivo. Poluição crescente, aquecimento global, destruição da camada de ozônio, chuva ácida e outros problemas são evidências do desgaste que o planeta vêm sofrendo. Na conferência do Cairo sobre Populações e Desenvolvimento, realizada em setembro de 1994, mais de 180 países ligados a ONU tentaram chegar a um consenso acerca de uma política que evite a explosão da população humana. Divergências quanto aos métodos de controle da natalidade impedem, até o momento, a adoção de soluções globalizantes, embora em alguns países medidas sérias já estejam em curso, no sentido de controlar o crescimento populacional excessivo da nossa espécie.



Curvas Representativas de Epidemia e Endemia

Epidemia é a situação em que ocorre aumento exagerado no número de casos de uma doença, em uma certa população, em uma determinada época. De modo geral, é causada por vírus ou bactérias, que provocam surtos da doença em uma determinada região. Gripe, dengue e cólera são doenças que costumam ter caráter epidêmico.

Endemia é a situação em que uma doença acomete um número constante de indivíduos de uma população ao longo do tempo.
 É característica de doenças provocadas por vermes (esquistossomose, teníase, ascaridíase) e protozoários (doenças de Chagas, malária etc.). Dependendo da doença, da população afetada e da área considerada, uma epidemia para determinado país pode ter um caráter epidêmico para, por exemplo, um determinado município desse país.
Pandemia é uma situação em que uma epidemia ocorre simultaneamente em vários locais do planeta. É o caso da AIDS, por exemplo.
 
Exemplo de curva epidêmica



domingo, 4 de março de 2012

Aviso Importante para o 2º ano - Estillo

Salve, Salve Moçada  do 2º ano


Conteúdos da Unidade 1 e 2 está disponível para eventuais consultas. Bom estudo a todos.


Um grande Abraço a Todos. Atenciosamente.

Prof. Delton Daniel Santos Savi

Citologia - Núcleo e Cromossomos (2º ano)


O núcleo celular

O pesquisador escocês Robert Brown (1773- 1858) é considerado o descobridor do núcleo celular. Embora muitos citologistas anteriores a ele já tivessem observados núcleos, não haviam compreendido a enorme importância dessas estruturas para a vida das células. O grande mérito de Brown foi justamente reconhecer o núcleo como componente fundamental das células. O nome que ele escolheu expressa essa convicção: a palavra “núcleo” vem do grego nux, que significa semente. Brown imaginou que o núcleo fosse a semente da célula, por analogia aos frutos.

Hoje, sabemos que o núcleo é o centro de controle das atividades celulares e o “arquivo” das informações hereditárias, que a célula transmite às suas filhas ao se reproduzir.

Células eucariontes e procariontes
A membrana celular presente nas células eucariontes, mas ausente nas procariontes. Na célula eucarionte, o material hereditário está separado do citoplasma por uma membrana – a carioteca – enquanto na célula procarionte o material hereditário se encontra mergulhado diretamente no líquido citoplasmático.

Os componentes do núcleo
O núcleo das célula que não estão em processo de divisão apresenta um limite bem definido, devido à presença da carioteca ou membrana nuclear, visível apenas ao microscópio eletrônico.
A maior parte do volume nuclear é ocupada por uma massa filamentosa denominada cromatina. Existem ainda um ou mais corpos densos (nucléolos) e um líquido viscoso (cariolinfa ou nucleoplasma).

A carioteca
A carioteca (do grego karyon, núcleo e theke, invólucro, caixa) é um envoltório formado por duas membranas lipoprotéicas cuja organização molecular é semelhante as demais membranas celulares. Entre essas duas membranas existe um estreito espaço, chamado cavidade perinuclear.
A face externa da carioteca, em algumas partes, se comunica com o retículo endoplasmático e, muitas vezes, apresenta ribossomos aderidos à sua superfície. Neste caso, o espaço entre as duas membranas nucleares é uma continuação do espaço interno do retículo endoplasmático.



Cromossomos da célula em divisão
Quando a célula vai se dividir, o núcleo e os cromossomos passam por grandes modificações. Os preparativos para a divisão celular têm inicio com a condensação dos cromossomos, que começam a se enrolar sobre si mesmos, tornando-se progressivamente mais curtos e grossos, até assumirem o aspecto de bastões compactos.

Constrições cromossômicas
Durante a condensação cromossômica, as regiões eucromáticas se enrolam mais frouxamente do que as heterocromáticas, que estão condensadas mesmo durante a interfase. No cromossomo condensado, as heterocromatinas, devido a esse alto grau de empacotamento, aparecem como regiões “estranguladas” do bastão cromossômico, chamadas constrições.


Centrômero e cromátides
Na célula que está em processo de divisão, cada cromossomo condensado aparece como um par de bastões unidos em um determinado ponto, o centrômero. Essas duas “metades” cromossômicas, denominadas cromátides-irmãs são idênticas e surgem da duplicação do filamento cromossômico original, que ocorre na interfase, pouco antes de a divisão celular se iniciar.
Durante o processo de divisão celular, as cromátides-irmãs se separam: cada cromátide migra para uma das células-filhas que se formam.
O centrômero fica localizado em uma região heterocromática, portanto em uma constrição que contém o centrômero é chamada constrição primária, e todas as outras que porventura existam são chamadas constrições secundárias.


As partes de um cromossomo separadas pelo centrômero são chamadas braços cromossômicos. A relação de tamanho entre os braços cromossômicos, determinada pela posição do centrômero, permite classificar os cromossomos em quatro tipos:
  • metacêntrico: possuem o centrômero no meio, formando dois braços de mesmo tamanho;
  • submetacêntricos: possuem o centrômero um pouco deslocado da região mediana, formando dois braços de tamanhos desiguais;
  • acrocêntricospossuem o centrômero bem próximo a uma das extremidades, formando um braço grande e outro muito pequeno;
  • telocêntricos: possuem o centrômero em um das extremidades, tendo apenas um braço.